Markerless video analysis for movement quantification in pediatric epilepsy monitoring

Abstract

This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient’s body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

Publication
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Haiping Lu
Haiping Lu
Professor of Machine Learning, Head of AI Research Engineering, and Turing Academic Lead

I am a Professor of Machine Learning. I develop translational AI technologies for better analysing multimodal data in healthcare and beyond.