Increasingly large amount of multidimensional data are being generated on a daily basis in many applications. This leads to a strong demand for learning algorithms to extract useful information from these massive data. This paper surveys the field of multilinear subspace learning (MSL) for dimensionality reduction of multidimensional data directly from their tensorial representations. It discusses the central issues of MSL, including establishing the foundations of the field via multilinear projections, formulating a unifying MSL framework for systematic treatment of the problem, examining the algorithmic aspects of typical MSL solutions, and categorizing both unsupervised and supervised MSL algorithms into taxonomies. Lastly, the paper summarizes a wide range of MSL applications and concludes with perspectives on future research directions.